Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors

Identifieur interne : 000A24 ( Main/Repository ); précédent : 000A23; suivant : 000A25

Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors

Auteurs : RBID : Pascal:13-0242465

Descripteurs français

English descriptors

Abstract

Guided-mode resonances have been exploited to filter the normal-incidence transmission of mid-infrared wavelengths through a photonic crystal slab. A two-dimensionally periodic structure has been integrated with a quantum dot infrared photodetector to narrow its mid-wavelength infrared photoresponse spectrum. Finite-difference time-domain simulations were employed to extract the filter transmittance, which is dominated by a peak near 6 μm. The simulated resonance is linearly tunable with the air-hole radius but it is insensitive to small changes in the incidence angle. To realize this filter, a patterned Ge slab was fabricated on a CaF2 cladding layer, on the InGaAs/GaAs photodetector. Filters fabricated on a plain GaAs substrate were also characterized by Fourier-transform infrared spectroscopy. This transmittance was consistent with the corresponding simulation, however the resonance peak was degraded in comparison to the filtered photodetector and its associated simulations.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0242465

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors</title>
<author>
<name sortKey="Mckerracher, I R" uniqKey="Mckerracher I">I. R. Mckerracher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT, 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT, 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, L" uniqKey="Fu L">L. Fu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT, 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT, 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, H H" uniqKey="Tan H">H. H. Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT, 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT, 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, C" uniqKey="Jagadish C">C. Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT, 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT, 0200</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0242465</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0242465 INIST</idno>
<idno type="RBID">Pascal:13-0242465</idno>
<idno type="wicri:Area/Main/Corpus">000A37</idno>
<idno type="wicri:Area/Main/Repository">000A24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Finite difference time-domain analysis</term>
<term>Fourier transformation</term>
<term>Gallium Arsenides</term>
<term>Incidence angle</term>
<term>Indium Arsenides</term>
<term>Infrared detectors</term>
<term>Normal incidence</term>
<term>Periodic structures</term>
<term>Photodetectors</term>
<term>Photonic crystals</term>
<term>Radiation detectors</term>
<term>Theoretical study</term>
<term>Transmittance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Détecteur rayonnement</term>
<term>Détecteur IR</term>
<term>Photodétecteur</term>
<term>Etude théorique</term>
<term>Méthode différence finie domaine temps</term>
<term>Transformation Fourier</term>
<term>Incidence normale</term>
<term>Angle incidence</term>
<term>Facteur transmission</term>
<term>Cristal photonique</term>
<term>Structure périodique</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>InGaAs/GaAs</term>
<term>Substrat GaAs</term>
<term>0757K</term>
<term>8560G</term>
<term>4270Q</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Guided-mode resonances have been exploited to filter the normal-incidence transmission of mid-infrared wavelengths through a photonic crystal slab. A two-dimensionally periodic structure has been integrated with a quantum dot infrared photodetector to narrow its mid-wavelength infrared photoresponse spectrum. Finite-difference time-domain simulations were employed to extract the filter transmittance, which is dominated by a peak near 6 μm. The simulated resonance is linearly tunable with the air-hole radius but it is insensitive to small changes in the incidence angle. To realize this filter, a patterned Ge slab was fabricated on a CaF
<sub>2</sub>
cladding layer, on the InGaAs/GaAs photodetector. Filters fabricated on a plain GaAs substrate were also characterized by Fourier-transform infrared spectroscopy. This transmittance was consistent with the corresponding simulation, however the resonance peak was degraded in comparison to the filtered photodetector and its associated simulations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MCKERRACHER (I. R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FU (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAN (H. H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JAGADISH (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT, 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>095104.1-095104.8</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000502459020130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0242465</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Guided-mode resonances have been exploited to filter the normal-incidence transmission of mid-infrared wavelengths through a photonic crystal slab. A two-dimensionally periodic structure has been integrated with a quantum dot infrared photodetector to narrow its mid-wavelength infrared photoresponse spectrum. Finite-difference time-domain simulations were employed to extract the filter transmittance, which is dominated by a peak near 6 μm. The simulated resonance is linearly tunable with the air-hole radius but it is insensitive to small changes in the incidence angle. To realize this filter, a patterned Ge slab was fabricated on a CaF
<sub>2</sub>
cladding layer, on the InGaAs/GaAs photodetector. Filters fabricated on a plain GaAs substrate were also characterized by Fourier-transform infrared spectroscopy. This transmittance was consistent with the corresponding simulation, however the resonance peak was degraded in comparison to the filtered photodetector and its associated simulations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B70Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Détecteur rayonnement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Radiation detectors</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photodétecteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photodetectors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode différence finie domaine temps</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Finite difference time-domain analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Transformation Fourier</s0>
<s5>24</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Fourier transformation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Incidence normale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Normal incidence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Incidencia normal</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Angle incidence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Incidence angle</s0>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cristal photonique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Photonic crystals</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Structure périodique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Periodic structures</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InGaAs/GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8560G</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>4270Q</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0242465
   |texte=   Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024